144 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL 44, NO. 1, JANUARY 1996

A Numerical Formulation of Dyadic Green’s
Functions for Planar Bianisotropic Media with
Application to Printed Transmission Lines

George W. Hanson

Abstract—An integral equation (IE) method with numerical so-
lution is presented to determine the complete Green’s dyadic for
planar bianisotropic media. This method follows directly from the
linearity of Maxwell’s equations upon applying the volume equiv-
alence principle for general linear media. The Green’s function
components are determined by the solution of two coupled one-
dimensional IE’s, with the regular part determined numerically
and the depolarizing dyad contribution determined analytically.
This method is appropriate for generating Green’s functions
for the computation of guided-wave propagation characteristics
of conducting transmission lines and dielectric waveguides. The
formulation is relatively simple, with the kernels of the IE’s to
be solved involving only linear combinations of Green’s functions
for an isotropic half-space. This method is verified by examining
various results for microstrip transmission lines with electrically
and magnetically anisotropic substrates, nonreciprocal ferrite
superstrates, and chiral substrates. New results are presented for
microstrip embedded in chiroferrite media.

1. INTRODUCTION

RANSMISSION LINES and waveguiding structures im-

plemented in planar geometries are important components
of hybrid and monolithic integrated circuits. As material pro-
cessing and fabrication techniques have matured, novel circuit
structures have been implemented by controlling the electro-
magnetic properties of the circuit materials, often through the
use of naturally occurring or intentionally induced anisotropy.
For example, biased ferrites, which have anisotropic perme-
ability, have been used in various nonreciprocal devices such
as phase shifters and isolators, where dynamic control over
performance characteristics can be achieved by varying the
applied magnetic bias field [1], [2]. Similar comments apply
to solid-state magnetoplasmas in [3], which have anisotropic
permittivity, and are most appropriate for millimeter-wave
devices. Chiral media, which are usually bi-isotropic, have
been investigated for antenna radomes, as polarization trans-
formers, and as microstrip circuit materials, among other uses
[4]-[10]. Other complex types of media, such as anisotropic
chiral materials in [11], and combinations of chiral materials
and ferrites (chiroferrites) in [12] and [13] are also being
studied. The above few references are intended to provide only
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representative examples of past research, since a large amount
of work has been done in this area.

In order to determine the propagation characteristics of
transmission lines and waveguides embedded in general lin-
ear media, integral equation (IE) techniques are often used.
The IE method provides physical insight, yields accurate
results, and is usually straightforward once the Green’s func-
tion for the surrounding environment is determined. Ana-
lytical determination of the Green’s function for multilay-
ered bianisotropic media is extremely complicated, and of-
ten seminumerical techniques are employed. Several rep-
resentative references for complex-media Green’s functions
are made here. The dyadic Green’s function for multilay-
ered electrically anisotropic structures is considered in [14]
and [15], and electrically and magnetically anisotropic me-
dia are considered in [1], [2], and [16]-[18], with some
numerical applications to antennas and transmission lines.
The Green’s dyadic for fully bianisotropic media is consid-
ered in [19], and with waveguiding applications in [20] and
[21].

A relatively simple numerical method for determining the
complete Green’s dyadic for general linear, planar media
is presented here. This method accommodates multiple
layers easily, allows for a full complex-valued matfrix
representation of the permittivity, permeability, and optical
activity dyadics as continuous functions of position normal
to the planar layering, and yields results that are analytically
integrable in directions transverse to the planar layering.
The formulation is relatively simple, with the kernels of
the IE’s to be solved involving only linear combinations
of Green’s functions for an isotropic half-space. The
method presented here is an extension of previous work
on inhomogeneous electrically anisotropic media [22]. This
method is verified by comparing results with those previously
published for a microstrip transmission line printed on
an electrically and magnetically anisotropic substrate, a
chiral substrate, and for a microstrip over an isotropic
substratc with a biased ferrite superstrate. New results
are presented for a microstrip embedded in chiroferrite
media. The method is general and applicable to one-,
two-, and three-dimensional problems, although three-
dimensional applications such as the study of end effects
or discontinuities would probably require a more efficient
solution of the defining IE’s than the present scheme described
here.

0018-9480/96$05.00 © 1996 IEEE



HANSON: NUMERICAL FORMULATION OF DYADIC GREEN’S FUNCTIONS FOR PLANAR BIANISOTROPIC MEDIA 145

II. THEORY

Maxwell’s equations in the frequency domain (e/** assumed
and suppressed) can be written as

VxE= ng T

Vx H=jwD+J. (D

where fe /m are electric/magnetic currents, with the constitu-
tive relations for bianisotropic media given by
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Because of the linearity of (1) and (2), the following relations
between fields and currents hold [23]

—e,e -

B(r) = /V &3 (77 - () v
/éZ; () - () V"

Gy, (F|F) - J(#) dV’ 3)

where é; ’ is the dyadic Green’s function which provides the
vector field of type a due to the vector current of type § in
the bianisotropic medium. Each dyadic Green’s function can
be decomposed into a regular part and a depolarizing dyadic
contribution [24], [25]

o, oo,

Gy (FIF') = P.V. Gy (FIF) + L ()6(F-7") &)
where P.V. indicates a principal value type integration in (3)
to avoid the point 7 = 7', The regular part can be written in

a plane-wave spectral form

G008 ke, ky, 2| 2)

bz r
e_ykm(w it =) gk, dk,. (5

The Green’s dyadics are cornpletely determined by specifying

the depolanzmg dyadics L (z) and the spectral terms
HZZ’ +(kz, ky, 2| 2’), which can be obtained by the solution

of a spatially one-dimensional problem. In the following, the

depolarizing terms L (2') are determined analytically (for
a “slice” principal volume [25]), and the spectral domain
Green’s dyadics ‘Z)’Z’ﬁ(km k,, z| 2') are determined numeri-
cally by solving a one-dimensional set of coupled polarization-
type IE’s. The remainder of this paper will concentrate on
determining the above quantities, and finally applications will
be presented for microstrip transmission lines in complex
media, as shown in Fig. 1.
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Fig. 1. A microstrip transmission line embedded in a planar bianisotropic
medium.

The formulation of IE’s to obtain the desired Green’s
functlons proceeds as follows. Invoking the transform pair

Flke, by, 2) // (2, y, 2)e ke Y i dy
F(a,y, 2 - / Flka, by, 2)e75=" - %9 dk, dk,
®)

allows a set of IE’s to be formed directly in the (k, k) plane.
The spectral representation of a point source of electric or mag-
netic type is applied to the inhomogeneous structure as shown
in Fig. 2(a), resulting in a set of unknown fields (€, h) The
inhomogeneous bianisotropic medium along with the unknown
fields can be replaced with a homogeneous isotropic medium
and unknown polarization currents as shown in Fig. 2(b),
via the volume equivalence theorem for bianisotropic media.
The volume equivalence theorem for chiral isotropic media is
presented in [8]. The generalization to bianisotropic media is
a simple extension of the above specialized case, and so the
derivation is not presented here, but results in

Jot = jul() = eI] - &+ jwé (<) - h

Jrd = juli() = ped] b+ jul(z)-& ()
where the dependence of the field and current vectors on
(kz, ky) is suppressed above and in the following.

A set of IE’s can be formed for the unknown polarization
currents immersed in the homogeneous isotropic region z > 0
by forcing the total field to equal the impressed field due
to the impressed current plus the scattered field due to the
polarization currents, € = &* + €°, h = ht+ ke Inserting

transform-domain relations similar to (3), but for the situation
depicted in Fig. 2(b), into the above condition results in

7G) - [ 3Gl ety de
- / Gl Ta) def = E(2)
o) - [ GGl - T 8
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Fig. 2. (a) Electric or magnetic current source embedded in a planar bianisotropic slab, producing unknown fields (e h) (b) Structure equivalent to

(a) via the bianisotropic volume equivalence principle. Inhomogeneous bianisotropic medium with unknown fields (€, h) is replaced with homogeneous

isotropic medium with unknown polarization currents (Jeq, J. eq)

where the incident fields are given by

&i(z) = / G (ele) - T () de

&)
In (8) and (9), the Green’s functions ?]a,,@ are for the simple
isotropic two-region geometry shown in Fig. 2(b), having
(€cs pie) for 2>0 and (&5, ps) for z <0, with the bianisotropic
medium absent. These functions are provided in the Appendix
for convenience. Upon inserting (7) into (8) the IE’s can be
written in a simple form as

&(z) — / 39 - () de
- / Ee’hq(z|z’)-ﬁ(z')dz': é
i) = [ 3l e o

- [ a" ) e = R
'z~0 <z<D (10)
where
57 (2l2) = jwg® e(ZlZ’) [€(2) — 1]
+ jwg® " (22" - E(2)
§°M()e) = jw g C (o) - E(2)

. oeh - -
+ Jwg " (2]2) - [1(2') = pe ]

oh,eq h,h

§" 1 (2l) = jwg" " (2l2) - ¢()
+ jwg" (o)) - [2(2) - e 1)

37" 2l) = jw" " (212) - () = ped]

+ W (2]) - E(2). (11)

It should be noted that (10) would have the same form
for a simple isotropic medium characterized by (e, u), with
the only difference being that the Green’s functions used in
(10) are combinations of Green’s functions for both source
types (electric and magnetic), rather than for a single source
type as when Z = Z = 0. This means, for instance,
that a program written to analyze scattering from media
characterized by (¢, ) by a volume formulation can be
extended to analyze media characterized by (¢, i, 2, Z)
by simply replacing the isotropic-media Green’s function
with an appropriate combination of isotropic-media Green’s
functions (i.e., (11)), at no additional computational expense
and minimal added complexity.

If the 1mpressed sources are located at zg and are _given
by Ji = [98(z — 20)J0 for the electric type and Ji =
BO ) (z z0)Jy, for the magnetic type, insertion into (10) ylelds

€(z) — / G922 - e(2') de’
_ / 352 R d

(12a)
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Due to the expected singular nature of the unknown fields if
0 < zp < D, the solution of the IE’s can be decomposed into
regular and singular terms [22] as

(2]20) = &-(2]20) + Mo (20)6(2 —
(2]20) = hr(2]20) +

zg)
]\Zgg (20)6(z ~ z0)
where the field/source point dependence z|zg of the solution

is included for clarity. Substituting (13) into (12) and equating
regular and singular terms yields

>0 Oy

(13)

€r(2]20) — / 7 (2|7") - €.(2|20) d2
~ Gy “Y(zlz0) - Mo (20)ép
~/ 59" (22 - Bo(#|20) d2’

z
weh -
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from (12a) and
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JWic
from (12b), where

6 = { 1 0<z<D
b 0 otherwise.

Equations (14b) and (15b) are two coupled equations for the
singular part of the solution of (€, h) which can be solved
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analytically to yield

e oy A B[ (20) 02 — € (20) IR
Mﬂo (ZO) - jUJ[Gzz(ZO>MZZ(ZO) - sz (zO)gzz(ZO)]
Mgo (ZO) ( ﬂ )[Ezz (zO) sz(zO)J ] (16)

Jw[ez:(zﬂ)ﬂzz (z(]) sz (ZO)é-zz( )]

where 39 = 39 = 3° for convenience.

The desired Green’s function can be constructed from the
regular and singular parts of the solution of (14) and (15). For
field points 0 < z < D, the solution provides the field at z
due to a point source at 2g, therefore, the field is by definition
the desired Green’s function in the (k. k,, z) plane. For an
electric source (JO = 1, JO, = 0),

—e, e —ééﬂzz(zO)
Loi (50) = Sl GoYen o) — Cenl0)Eon (o))
wh,e _ 2£C.2(20)
Ly, (ZO) - jw[ezz(zﬂ)p‘zz(zﬂ) - sz(Z())gzz(ZO)] “
whereas, for a magnetic source (J? = 0, JS, = 1)
el 4 = )
gbz 7'( lZ()) ﬁo :ﬁT(zle)
e, h . ééézz(zO)
bt () = e G ins o) — Cor G)on (o)
bk —2%e..(20)
h _ . (18
i (20) Jwlezz (20)22(20) — C2z(20)€22(20)] o

For z > D, the desired Green’s function is the sum of the
field due to the equivalent polarization currents radiating into
the isotropic half-space and the direct field of the impressed
source. For an electric source

G5 (el0) - ° = / GOl - (|0 d

+ / 7M1 - Bl |20) d2
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and for a magnetic source
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where the depolarizing dyad contribution comes from the
direct field term. Substitution of (17) and (18) or (19) and
(20) into (4) and (5) yields the desired space-domain Green’s
dyadics. It is interesting to note that for a source embedded in
bianisotropic (or bi-isotropic) media, all four Green’s dyadic
types have an associated depolarizing contribution, whereas for
anisotropic media only the {e, e} and {h, A} Green’s dyadics
have such a contribution.

IIT. NUMERICAL SOLUTION AND RESULTS

IE’s (14a) and (15a) are solved using a pulse-function,
MoM/Galerkin procedure. The unknown fields over the range
0 <z £ D are expanded in a set of pulse functions as

N
en(2) = Z Zéeagepn(z)e_'y‘z"z‘]'

Be=z,y,z n=1

N
Y. D ballpa(z)e Tl 2

Br=z,y,» n=1
where

Wh, Wy,
O i I
0 otherwise

with w,, the width of the nth pulse. The exponential function is
incorporated to enhance convergence of (21) for large values of
k.. where vy = p. with p, defined in the Appendix. Substitution
of (21) into (14a) and (15a) and point matching results in
a (6N) x (6N) matrix system [Z(k,, ky)][a] = [b] which
can be solved for the unknown amplitudes a’:, a%*. The
spatial integrals associated with expansion can be performed
in closed form, so that the MoM matrix entries are determined
analytically.

To demonstrate the accuracy and flexibility of the above
method, propagation characteristics for several microstrip ge-
ometries utilizing complex media are presented and compared
to previously published results. Microstrip propagation char-
acteristics were obtained using a space-domain IE, which
has as its kernel the bianisotropic medium Green’s function
of type {e, e} previously described. The microstrip IE was
solved using a Chebyshev polynomial Galerkin method [22].
Propagation constants k, were found by an iterative root
search. In all of the following results, N = 20 uniform-width
pulses were used to generate the numerical Green’s functions.
Because of the smooth nature of the various Green’s function
components [2], [22], the Green’s functions were precomputed
at various values of (k,, k) and interpolated.

In Fig. 3 the normalized propagation constant (k, /kq) for a
microstrip transmission line with an electrically and magneti-
cally anisotropic substrate is shown, with results compared to

7‘8 T i T T 1 T T v T T T T I T T T t ! T

This work

7.6 +  Ref.[18) .

(ky/ko) 2

6.4 M

L ! i I ) 1 n | L 1 I 1 L I ] i
0 10 20 30 40 50 B0 70 80 90
Rotation (g ©)
Fig. 3. (ky/ko)? versus anisotropy rotation angle (¢c, ¢, = @ +Ae) for
microstrip on an electrically and magnetically anisotropic substrate at f = 40

Ghz, W = dy = 0.1 cm with ez, = 5.12, €yy = 3.4, €,, = 5.12,
Hee = 176, pryy = 1.48, p:» = 1.62, and 6. = §, = 0.

those of [18]. The constitutive parameters are given as
€zx O 0

[] =RT(0c, ¢e) | O ey O | R(0e, 60),
0 0 €
Her O 0
(1] :RT(QW $u) | 0 pyy O | R(bu, ép)
0 0 N/:z

where R(§, ¢) is an orthogonal rotation matrix which accounts
for rotation of the coordinate system wherein the material
dyadics take a diagonal form w.r.t. the waveguiding coordinate
system [26] and (6, ¢) are the usual spherical angles. The
matrix RT is the transpose of R. The rotation of the magnetic
anisotropy is different than for the electric anisotropy, with
b =0, =0, ¢, = ¢ + Ad. Fig. 4 shows the normalized
propagation constant versus frequency for a geometry similar
to that of Fig. 3, for two different values of (¢, A¢). In both
figures good agreement is found with previously published
results.

The dispersion curve for the forward and reverse prop-
agation constant of a microstrip transmission line with a
ferrite superstrate/isotropic substrate and with a double layer
ferrite/isotropic substrate is shown in Fig. 5. The permittivity
is isotropic in each region, with anisotropic permeability given
by

poogk 0
[l = woR(9, ¢) |—jr n 0] RT(9, 4)
0 0 1

where p = 14 (wown)/(wg — w?), & = (wwnrr)/(w§ — w?)

with wy = ypoHo, war = ypoM, with M, the material
saturation magnetization, Hy is the dc magnetic bias field, v =
—1.759x 10! kg/coul, and (6, ¢) are the angles of the applied
magnetic field. Results are compared with those of [1]. Good
agreement is found except for the reverse propagation constant
of the double substrate geometry. This could possible be due
to differing number of expansion functions for the microstrip
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Fig. 6. Dispersion curve for microstrip on a chiral substrate for various
values of the chirality parameter. e; = 4 4+ &2, yy =1, dy = W = 0.3 cm,
&1 = —j/€opiok1, (1 = —&1. Note: Ref. [7] uses a different constitutive
model, which corresponds to these numerical values using the model of (2).
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Fig. 5. Dispersion curve for microstrip with a ferrite superstrate/isotropic
substrate and with a double layer ferrite/isotropic substrate. e; = 12.9,
e =12.6, p1 =1, poM, = 0.275 T, wo = 0.1wp,, d1 = do = 0.0254 cm,
W = 0.1016 cm, § = 90°, ¢ = 0°.

current (five are shown here, ten yielded the same results). The
authors of [2] also found some values of propagation constant
to be lower that those of [1], although they didn’t consider the
double substrate case.

Fig. 6 shows the dispersion curve for a microstrip line on an
isotropic chiral substrate, where §; = —j./€ofiok1, (1 = —&1,
for several values of chirality parameter ;. Good agreement
is seen with the results of [7].

Although not shown here, this method also can be used
to obtain the propagation characteristics of bianisotropic slab
waveguides. To obtain slab waveguide modes, a root search is
performed for values of (k, k,) which force the determinate
of the (6N) x (6N) method of moments matrix to vanish.
Results using this method ‘were compared to previously pub-

lished results for a variety of chiral [27] and achiral planar

slabs, where excellent agreement was found.

3.52 pr———r— — ——
3.47F
3.42 /'
9 / /::,’:ff:/ L ]
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> 3 W, e 3
< Sl —e— ,=0.5
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L ]
I —— —— fwd
3278 amm e b
;_1/ .’%,l‘m"\ d
3.22-....J1..*.|.4..1) .
5 10 15 20 25
Frequency (GHz)
Fig. 7. Dispersion curve for microstrip -with a  chiroferrite

superstrate/isotropic substrate for several different values of chirality
parameter k2 for k1 = 0.0. &g = 129, e = 126, p; = 1,
poMs = 02757, wg = 0.1wny,, d1 = dg = 0.0254 cm, W =0.1016 cm,
6 =90° ¢ = 0° & = —j/epoke, (2 = —Ea.

Finally, some new results for a microstrip transmission line
embedded in chiroferrite media are presented in Figs. 7 and
8. The ferrite properties of the superstrate are the same as
in Fig. 5, although in Fig. 7 the superstrate also has some
nonzero chirality. In Fig. 8 the chirality of the superstrate is
fixed, with results shown for several values of the substrate
chirality parameter. In both figures it can be seen that the
addition of chirality shifts the dispersion curve, although the
differential phase shift (k" — k,")/ko is not greatly affected
by chirality for the range of parameters investigated here.

IV. CONCLUSION

An integral equation method with numerical solution is
presented to determine the complete Green’s dyadic for planar
bianisotropic media. The Green’s function components are
determined by the solution of two coupled one-dimensional
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Fig. 8. Dispersion curve for microstrip with a  chiroferrite

superstrate/bi-isotropic substrate for several different values of chirality
parameter x1 for ko = 1.0. ¢ = 12.9, ¢ = 12.6, 11 = 1,
poMs =0.275T, wy = 0.1wm, d1 = d2 = 0.0254 cm, W = 0.1016 cm,
0 =90° ¢ =0° & = —j./eopokt, (1 = —&1.

IE’s, with the regular part determined numerically and the
depolarizing dyad contribution determined analytically. This
method is appropriate for generating Green’s functions for
the computation of guided-wave propagation characteristics of
conducting transmission lines and dielectric waveguides. The
formulation is relatively simple, with the kernels of the IE’s
to be solved involving only linear combinations of Green’s
functions for an isotropic half-space. Results for microstrip
transmission lines embedded in complex media have been
presented to demonstrate the method.

APPENDIX

For a two-region isotropic environment having (e., p.) for
z > 0 and (e, ps) for z < 0, the Hertzian potential in the
cover region due to an electric source in the cover region in
the 2-D spectral plane is given as [28]

7 = [ 4,61 L) (A1)

z

where the Green’s function g, is a Hertzian potential Green’s
dyadic given by

G.(212") = 1g% + (83 + 90) g}

+ 2[(7ke2 + jhy)ge + 972]  (A2)
where
—pelz—2'|

P n o Tl € P 3

)= 5k e Ay
is the principal (direct) component of potential and
tEZI|Zj) Rt((kaca ky)) e—pc(z—{—z’)

gn(z = = { R,(ks, ky —_— A4)
g2y ) | Ol k) | 2P

yields the reflected potential. Coefficients are given as

Ay
Rt = ﬁ,
An
R, = Ze
2(N2 Ms20 — 1)pc
O=""p (43)
where
At‘: Mfcpc = Ps
A, ﬁ‘iyfcpc — Ds
Z8:A§€y+m
Zh = M2 p. + p, (A6)
with N2, = e,/e., M2 = us/m{ ks,c = w./€, olts, e
Me = \/te/€c, and ps c = 4/k2 +k, < k2 .. The resulting
fields are \
€(2) = (k2 + VV)#(z) R—
h(2) = jweV X 7(2) (A7)

where V = 2jk, + §jk, + 2(8/8z). Properly passing the
spatial derivative through the integral in (A1) [24], [25] results
in the electric and magnetic dyadic Green’s function for an
electric source

§7°(212") = PV.(K2 + VV) G (2]2)
+ Lé(z—2)

"022) =V x §.(2]) (A8)

where the depolarizing dyad is L = —22/jwe.. Invoking
duality [26] leads to the other two Green’s components as

37" (2l2) = 7 (o)) |emn

p—e

3" C() = =57 (212")

€—
n—e

(A9)
where ¢ — b implies ‘interchanging a and b.
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