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A Numerical

Functions for

Application

Formulation of Dyadic Green’s

Planar Bianisotropic Media with

to Printed Transmission Lines
George W. Hanson

Abstract—An integral equation (IE) method with numerical so-

lution is presented to determine the complete Green’s dyadic for

planar bianisotropic media. This method follows directly from the

linearity of Maxwell’s equations upon applying the volume equiv-

alence principle for general linear media. The Green’s function

components are determined by the solution of two coupled one-

dimensional IE’s, with the regular part determined numerically

and the depolarizing dyad contribution determined analytically.

This method is appropriate for generating Green’s functions

for the computation of guided-wave propagation characteristics

of conducting transmission lines and dielectric waveguides. The

formulation is relatively simple, with the kernels of the IE’s to

be solved involving only linear combinations of Green’s functions

for an isotropic half-space. This method is verified by examining

various results for microstrip transmission lines with electrically

and magnetically anisotropic substrates, nonreciprocal ferrite

superstrates, and chiral substrates. New results are presented for

microstrip embedded in chiroferrhe media.

I. INTRODUCTION

T RANSMISSION LINES and waveguiding structures im-

plemented in planar geometries are important components

of hybrid and monolithic integrated circuits. As material pro-

cessing and fabrication techniques have matured, novel circuit

structures have been implemented by controlling the electro-

magnetic properties of the circuit materials, often through the

use of naturally occurring or intentionally induced anisotropy.

For example, biased ferrites, which have anisotropic perme-

ability, have been used in various nonreciprocal devices such

as phase shifters and isolators, where dynamic control over

performance characteristics can be achieved by varying the

applied magnetic bias field [1], [2]. Similar comments apply

to solid-state magnetoplasmas in [3], which have anisotropic

permittivity, and are most appropriate for millimeter-wave

devices. Chiral media, which are usually hi-isotropic, have

been investigated for antenna radomes, as polarization trans-

formers, and as microstrip circuit materials, among other uses

[4]-[10]. Other complex types of media, such as anisotropic

chiral materials in [11], and combinations of chiral materials

and ferrites (chiroferrites) in [12] and [13] are also being

studied. The above few references are intended to provide only
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representative examples of past research, since a large amount

of work has been done in this area.

In order to determine the propagation characteristics of

transmission lines and waveguides embedded in general lin-

ear media, integral equation (IE) techniques are often used.

The IE method provides physical insight, yields accurate

results, and is usually straightforward once the Green’s func-

tion for the surrounding environment is determined. Ana-

lytical determination of the Green’s function for multilay-

ered bianisotropic media is extremely complicated, and of-

ten seminumerical techniques are employed. Several rep-

resentative references for complex-media Green’s functions

are made here. The dyadic Green’s function for multilay-

ered electrically anisotropic structures is considered in [14]

and [15], and electrically and magnetically anisotropic me-

dia are considered in [1], [2], and [16]–[18], with some

numerical applications to antennas and transmission lines.

The Green’s dyadic for fully bianisotropic media is consid-

ered in [19], and with waveguiding applications in [20] and

[21].

A relatively simple numerical method for determining the

complete Green’s dyadic for general linear, planar media

is presented here. This method accommodates multiple

layers easily, allows for a full complex-valued matrix

representation of the permittivity, permeability, and optical

activity dyadics as continuous functions of position normal

to the planar layering, and yields results that are analytically

integrable in directions transverse to the planar layering.

The formulation is relatively simple, with the kernels of

the IE’s to be solved involving only linear combinations

of Green’s functions for an isotropic half-space. The

method presented here is an extension of previous work

on inhomogeneous electrically anisotropic media [22]. This

method is verified by comparing results with those previously

published for a microstrip transmission line printed on
an electrically and magnetically anisotropic substrate, a

chiral substrate, and for a microstrip over an isotropic

substrate with a biased ferrite superstrata. New results

are presented for a microstrip embedded in chiroferrite

media. The method is general and applicable to one-,

two-, and three-dimensional problems, although three-

dimensional applications such as the study of end effects

or discontinuities would probably require a more efficient

solution of the defining IE’s than the present scheme described

here.
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II. THEORY

Maxwell’s equations in the frequency domain (e~wt assumed

and suppressed) can be written as

where le/m are electric/magnetic currents, with the constitu-

tive relations for bianisotropic media given by

Because of the linearity of (1) and (2), the following relations

between fields and currents hold [23]

/

-h, e

ii(~) = Gbi (717’) . ~.(~’) W’
v

J
-h, h

+ G&i (717’) . ]m(F’) W’ (3)
v

where ~~~ 0 is the dyadic Green’s function which provides the

vector field of type a due to the vector current of type ~ in

the bianisotropic medium. Each dyadic Green’s function can

be decomposed into a regular part and a depolarizing dyadic

contribution [24], [25]

where P.V. indicates a principal value type integration in (3)

to avoid the point F’= F“. The regular part can be written in

a plane-wave spectral form

co

ejkjz:z+)ejkv(y -y’) d~z d~y. (5)

The Green’s dyadics are compl~tely determined by specifying

the depolarizing dyadics ~a’ (z’) and the spectral terms

?;;,! (k~ ) kv ) 21z’)) which can be obtained by the SOIUtiOn
of a spatially one-dimensional problem. In the following, the

depolarizing terms ~a’ ‘(z’) are determined analytically (for

a “slice” principal volume [25]), and the spectral domain

-” p k k z I d) are determined numeri-Green’s dYadics g~z>.( => v,
tally by solving a one-dimensional set of coupled polarization-

type IE’s. The remainder of this paper will concentrate on

determining the above quantities, and finally applications will

be presented for microstrip transmission lines in complex

media, as shown in Fig. 1.

1’z
I ~c,pc

Es,p~
x

Fig. 1. A microstrip transmission line embedded in a planar bianisotropic

medium.

The formulation of IE’s to obtain the desired Green’s

functions proceeds as follows. Invoking the transform pair
cc

Jl&, ~,, ~) =
!

#’(%, y, ,z)e–~kzze–~~wy dx dy

—ec

—m

(6)

allows a set of IE’s to be formed directly in the (kZ, kv ) plane.

The spectral representation of a point source of electric or mag-

netic type is applied tcl the inhomogeneous structure as shown

in Fig. 2(a), resulting in a set of unknown fields (.5’, ~). The

inhomogeneous bianisotropic medium along with the unknown

fields can be replaced with a homogeneous isotropic medium

and unknown polarization currents as shown in Fig. 2(b),

via the volume equivalence theorem for bianisotropic media.

The volume equivalence theorem for chiral isotropic media is

presented in [8]. The generalization to bianisotropic media is

a simple extension of the above specialized case, and so the

derivation is not presented here, but results in

@ =ju[z(.z’) – 6.7] ~Z+jur(z’) ~z

(7)r~q =jw[~(z”) – /4.7] ~i + jw~(z’) . d

where the dependence of the field and current vectors on

(k., ky) is suppressed above and in the following.
A set of IE’s can be formed for the unknown polarization

currents immersed in the homogeneous isotropic region z >0

by forcing the total field to equal the impressed field due

to the impressed current plus the scattered field due to the

polarization currents, E’ = da + 6“, ~ = ~ + ~s. Inserting

transform-domain relations similar to (3), but for the situation

depicted in Fig. 2(b), into the above condition results in

J.

. .. O<.Z<D (8)
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Fig. 2. (a) Electric or magnetic current source embedded in a planar bianisotropic slab, producing unknown fields (~, ~). (b) Structure equivalent to

(a) via the bianisotropic volume equivalence principle. Inhomogeneous bianisotropic medium with unknown fields (Z, h) is replaced with homogeneous

isotropic medium with

where the incident

zi(z) =

unknown polarization currents ( ~~q, ~~g ),

J.

J‘h’ ‘(,+!) . fi;(z’) dz’.+g
(9) It should be noted that (10) would have the same form

z for a simple isotropic medium characterized by (c, ~), with

In (8) and (9), the Green’s functions ~ a’ p are for the simple the only difference being that the Green’s functions used in

isotropic two-region geometry shown in Fig. 2(b), having (10) are combinations of Green’s functions for both source

(%, L&) for z> O and (c,, PS) for z <0, with the bianisotropic
types (electric and magnetic), rather than for a single source

medium absent. These functions are provided in the Appendix type as when & = ( = (). This means, for instance,

for convenience. Upon inserting (7) into (8) the IE’s can be that a program written to analyze scattering from media

written in a simple form as characterized by (c, ~) by a volume formulation can be

where

(lo)

extended to an~lyze media characterized by (?, ~, ~, ~)

by simply replacing the isotropic-media Green’s function

with an appropriate combination of isotropic-media Green’s

functions (i.e., (1 1)), at no additional computational expense

and minimal added complexity.

If the impressed sources are located at Z. and are given

by fie = ~~$(z – Zo) J: for the electric type and firn =

~&~(z–zo)J& for the magnetic type, insertion into (10) yields

z(z) –
J

~e’eq(zlz’)~E’(.z’) di
z

+ Ee’h(zlzo).p&Jg (12a)
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+ dw(z120) . /5:Jg
. .. O<.Z <D. (12b)

Due to the expected singular nature of the unknown fields if

O < Z. < D, the solution of the IE’s can be decomposed into

regular and singular terms [22] as

Z(zlzo) = ‘?T(.zlz’”) + ti;:(zo)t(z – 2’0)

i(zlzo) = Z?.(zlzo) + AZ$g(zo)t(z – .zO) (13)

where the fieldkource point dependence z I.zo of the solution

is included for clarity. Substituting (13) into (12) and equating

regular and singular terms yields

‘zr(’+”) –
/

ije’eq(.zlz’) . Zr(z’\zo)dz’
~

1 O< ZO<D

6D = { O otherwise.

Equations (14b) and (15b) are two c~upled equations for the

singular part of the solution of (E’, h), which can be solved

analytically to yield

–2(; ~p)[pzz(zo)’l:– ‘Q. (zo)g]Al;, (Zo)= -
yd[&(zo)/Lzz(’zo)– (zz(zo)&zz(z(j)]

where B: = ~~ = ~“ for convenience.
The desired Green’s function can be constructed from the

regular and singular parts of the solution of (14) and (15). For

field points O ~ z ~ D, the solution provides the field at z

due to a point source at ,zO,therefore, the field is by definition

the desired Green’s function in the (kZ, Icy, z) plane. For an

electric source (J: = 1, J& = O),

2L’,:(+0) “ B“=Lwo)

1:;’(20)=- –@zz(20)

JW[CZZ(Z”)UZZ(2”) – (zz(2!”)&2(z”)]

_h, e

Lbt (%) = -

2.2(ZZ(.Z”)
(17)

Ju[czz(z”)pzz(z”) – <zz(z”)&z(z”)]

whereas, for a magnetic source (J: = O, J: = 1)

?:;:r(zlzo) . ~o =ZT(21Z’0)

~)i,:(~l~o) “ b“ = ~J~l~”)

~e, h

L6i (.zo) = -
.qz.(zo)

Jw[czz(zo)&zz(zl)) – (Zz(z’”)fzz(zo)]

-h, h

L6i (.zo) = -

–’2&z. (zo)

(18)
jw[czz(zo)pzz(zo) – <Zz(zo)<zz(zl))] “

For z > D, the desired Green’s function is the sum of the

field due to the equivalent polarization currents radiating into

the isotropic half-space and the direct field of the impressed

source. For an electric source

lj;;e(zlzo) ~p ❑ ,

/
;e’eq(zl.z’) . E’T(.z’lzo) dz’ ‘

z

+
/

lje’hq(+’). ir(z’lzo)dz’

+ ;%2.) . ]0

and for a magnetic source
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where the depolarizing dyad contribution comes from the

direct field term. Substitution of (17) and (18) or (19) and

(20) into (4) and (5) yields the desired space-domain Green’s

dyadics. It is interesting to note that for a source embedded in

bianisotropic (or hi-isotropic) media, all four Green’s dyadic

types have an associated depolarizing contribution, whereas for

anisotropic media only the {e, e} and {h, h} Green’s dyadics

have such a contribution.

III. NUMERICAL SOLUTION AND RESULTS

IE’s (14a) and (15a) are solved using a pulse-function,

MoM/Galerkin procedure. The unknown fields over the range

O ~ z ~ D are expanded in a set of pulse functions as

N

(21)

where

P.(z) =
{

1 +<z<zn+?
O otherwise

with Wn the width of the nth pulse. The exponential function is

incorporated to enhance convergence of(21) for large values of

k., where -y = p. with p. defined in the Appendix. Substitution

of (21) into (14a) and (15a) and point matching results in

a (6JV) x (61V) matrix system [Z(L2, ky)] [a] = [b] which

can be solved for the unknown amplitudes a~e, a~. The

spatial integrals associated with expansion can be petiormed

in closed form, so that the MoM matrix entries are determined

analytically.

To demonstrate the accuracy and flexibility of the above

method, propagation characteristics for several microstrip ge-

ometries utilizing complex media are presented and compared

to previously published results. Micro strip propagation char-

acteristics were obtained using a space-domain IE, which

has as its kernel the bianisotropic medium Green’s function

of type {e, e} previously described. The microstrip IE was

solved using a Chebyshev polynomial Galerkin method [22].

Propagation constants ky were found by an iterative root

search. In all of the following results, N = 20 uniform-width

pulses were used to generate the numerical Green’s functions.
Because of the smooth nature of the various Green’s function

components [2], [22], the Green’s functions were precomputed

at various values of (kZ, /cV) and interpolated.

In Fig. 3 the normalized propagation constant (kY/ko) for a

microstrip transmission line with an electrically and magneti-

cally anisotropic substrate is shown, with results compared to

c,

1 — This work
7.6 .i\ , Ref. [1 81

h
.

7,4 di— —
s, /-+

7.2 -
.*

7.0 -

6.8

66 -
. .*

6.4 ~
O 10 20 30 40 50 60 70 80 90

Rotation (p, 0,

Fig. 3. (kv /ko )2 versus anisotropy rotation angle (@c, q$~ = ~.+ A@) for
microstrip on an electrically and magnetically anisotropic substrate at f = 40

Ghz, M’ = dl = 0.1 cm with CZZ = 5,12, cYY = 3,4, czz = 5.12,

P..C = 1.76, K9Y = 1.48, p== = 1.62, and 6’, = $& = O.

those of [18]. The constitutive parameters are given as

[1

ezz o
[6]= IF’(O.,(#JC)o .:, 0 w~c, A),

o 0 E.z

[1

!-b. o 0
[i = ~T(~P)4,L) o v,, o R(op,fjp)

o 0 ~,z

where R(@, ~) is an orthogonal rotation matrix which accounts

for rotation of the coordinate system wherein the material

dyadics take a diagonal form w.r.t. the waveguiding coordinate

system [26] and (6’, ~) are the usual spherical angles. The

matrix RT is the transpose of R. The rotation of the magnetic

anisotropy is different than for the electric anisotropy, with

0, = 9P = O, 4P = de + Ad. Fig. 4 shows the normalized

propagation constant versus frequency for a geometry similar

to that of Fig. 3, for two different values of (q$c, A@). In both

figures good agreement is found with previously published

results.

The dispersion curve for the forward and reverse prop-

agation constant of a microstrip transmission line with a

ferrite superstrata/isotropic substrate and with a double layer

ferrite/isotropic substrate is shown in Fig. 5. The permittivity

is isotropic in each region, with anisotropic permeability given

by

[“1

[~d = /-LoR(@,d) -IK t ~ RT(O, 4)

o 01

where # = 1 + (UoUM)/(w~ – W2), K = (CLXJLf)/(W~ – W2)

with W. = Tpo Ho, wAf = TUOJK with M. the material
saturation magnetization, Ho is the dc magnetic bias field, T =

– 1.759x 1011 kg/coul, and (d, q5)are the angles of the applied

magnetic field. Results are compared with those of [1]. Good

agreement is found except for the reverse propagation constant

of the double substrate geometry. This could possible be due

to differing number of expansion functions for the microstrip
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Fig. 4. Dispersion curve for microstrip on an electrically and magnetically

anisotropic substrate with IV = dl n 0.05 cm for two vafues of (~,, Ag5)

with EZZ = 5.12, Egv = 3.4, ezz = 5.12, p~~ = 1.76, pvv = 1.48,

~., = 1.62, and @. = f3P = O.
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Fig. 5. Dispersion curve for microstrip with a ferrite superstrata/isotropic

substrate and with a double layer ferrite/isotropic substrate. cl = 12.9,

62 = 12.6, PI = 1, poll’s = 0.275 T, uo = O.lU~, dl = dz =0.0254 cm,
IV = 0.1016 cm, 6’ = 90°, @ = OO.

current (five are shown here, ten yielded the same results). The

authors of [2] also found some values of propagation constant

to be lower that those of [1], although they didn’t consider the

double substrate case.

Fig. 6 shows the dispersion curve for a microstrip line on an

isotropic chiral substrate, where J$l = –.i@fil, <1 = –&,

for several values of chirality parruneter ~1. Good agreement

is seen with the results of [7].

Although not shown here, this method also can be used

to obtain the propagation characteristics of bianisotropic slab

waveguides. To obtain slab waveguide modes, a root search is

, performed for values of (Ic Z,Icy) which force the determinate

of the (61V) x (61V) method of moments matrix to vanish.

Results using this method were compared to previously pub-

lished results for a variety of chiral [27] and achiral planar

slabs, where excellent agreement was found.
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. Ref. [71
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Kl=o. o

Frequency (GHz)

Fig. 6. Dispersion curve for microstrip on a chiral substrate for various

values of the chwafity parameter. el = 4 + PC2,PI = 1, dl = IV = 0.3 cm,

gl = –~-~1, (1 = --cl. Note: Ref. [7] uses a different constitutive
model, which corresponds to these numerical values using the model of (2).
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Fig. 7. Dispersion curve for microstrip with a chuofemite

superstrata/isotropic subswdte for several different vahres of chirality

parameter Hz for tc1 = 0.0. 61 = 12.9, @ = 12.6, Ml = 1,
polbf, = 0.275 T, W. = O.lmm, dl = dz = 0.0254 cm, W = 0.1016 cm,

9 = 90”, f# = 0°, (2 = –-j@ipiitc2, & = –(2.

Finally, some new results for a microstrip transmission line

embedded in chiroferrite media are presented in Figs. 7 and

8. The ferrite properties of the superstrata are the same as

in Fig. 5, although in Fig. 7 the superstrata also has some

nonzero chirality. In Fig. 8 the chirality of the superstrata is

fixed, with results shc~wn for several values of the substrate

chirality parameter. In both figures it can be seen that the

addition of chirality slhifts the dispersion curve, although the

differential phase shift (k: – k;) /k. is not greatly affected

by chirality for the range of parameters investigated here.

IV. CONCLUSION

An integral equation method with numerical solution is

presented to determine the complete Green’s dyadic for planar

bianisotropic media. The Green’s function components are

determined by the solution of two coupled one-dimensional
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Fig. 8. Dispersion curve for micro strip with a chiroferrite

snperstratelbi-isotropic substrate for several different values of chirality
parameter ~1 for tcz = 1.0. ●l = 12.9, ●z = 12.6, /sl = 1,

#ol!ls =0.275 T,u0 =O.lU~, dl =d2 =0,0254 cm, W= 0.1016 cm,
6 =90 °,q$ =00,&l = –j_Kl,<l = ‘cl.

IE’s, with the regular part determined numerically and the

depolarizing dyad contribution determined analytically. This

method is appropriate for generating Green’s functions for

the computation of guided-wave propagation characteristics of

conducting transmission lines and dielectric waveguides. The

formulation is relatively simple, with the kernels of the IE’s

to be solved involving only linear combinations of Green’s

functions for an isotropic half-space. Results for microstrip

transmission lines embedded in complex media have been

presented to demonstrate the method,

APPENDIX

For a two-region isotropic environment having (CC, ~.) for

z > 0 and (cS, ~~ ) for z < 0, the Hertzian potential in the

cover region due to an electric source in the cover region in

the 2-D spectral plane is given as [28]

7(2’) =
/

ljn(+’) . 7.(J) L’z’ (Al)
z

where the Green’s function 6 * is a Hertzian potential Green’s—.,
dyadic given by

ij=(212’) = 79P + (m + M)9:

+ -q(jlkzi + jkyj)gc + g;iq

where

9p(z]2’) – ~ e–~’l”–z’l
jkc 2(27r)pc

is the principal (direct) component of potential and

(A2)

(A3)

(A4)

yields the reflected potential. Coefficients are given as

where

‘\
At = hf:cpc – p.

.

An ~’@cpc – p.

z’ = N:cp.+ p,
Zh = ikf::pc+ p, (A6)

fields are ‘\
‘.

z(z) = (k: + fm.)7(z)

z(z)= jwecb x 7(2) (A7)

where @ = tjk. + yj.ky + 2 (0/~z). Properly passing the

spatial derivative through the integral in (A 1) [24], [25] results

in the electric and magnetic dyadic Green’s function for an

electric source

lj’’e(+) = P. V.(k:+ W.)ljn(+’)

+ L$(2– 2’)

-&’e(zlz’)=V x Ijm(zlz’) (A8)

where the depolarizing dyad is L = –2.2/jwcc. Invoking

duality [26] leads to the other two Green’s components as

?#’h(+) =Ije’e(+)l::t

Gh’e(+)= +je’h(zlz’)lfi=? (A9)

where a ~ b implies interchanging a and b.
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